SHELL HYDROGEN STUDY
ENERGY OF THE FUTURE?
Sustainable Mobility through Fuel Cells and H₂

In cooperation with Wuppertal Institut
Cautionary Note

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as “joint ventures” and “joint operations” respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2016 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, July 4th 2017. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.
SHELL HYDROGEN STUDY

- Shell scenario studies (since 1958)
- Shell → H₂ R&D, production and use
- Own business Unit Shell Hydrogen
- Shell hydrogen study → objectives:
 - Future potentials of hydrogen
 - Analyse business opportunities
 - Focus on (auto)mobility applications
 - Inform business partners, customers, stakeholders
- Collaboration with think-tank Wuppertal Institut
CONTENTS

1) Properties of H₂
2) Production and supply pathways
3) Storage and transport
4) Applications → material or energy
5) Stationary applications
6) Mobility applications (TR Levels)
7) Ownership cost of FCEVs
8) Retail infrastructure build-up
9) FCEV fleets, energy and greenhouse gas balances
THE ELEMENT HYDROGEN

Water will be the coal of the future.

Jules Verne
„The Mysterious Island“
1874

Jules Verne: water – the new coal?

Dieter Zetsche: hydrogen – the better oil?

Which future role for hydrogen as an energy carrier?
PHASE DIAGRAM HYDROGEN

- Solid
- Liquid
- Gaseous
- Supercritical fluid
- Critical point 13 bar, -240°

Copyright of Shell International
IGNITION RANGES OF FUELS

- Hydrogen
- Methane
- Propane
- Ethanol
- Petrol
- Biodiesel
- Diesel

Legend:
- Mixture too lean
- Ignition range
- Mixture too rich

Gestis 2017, own diagram
SHARE OF PRIMARY ENERGY CARRIERS IN GLOBAL HYDROGEN PRODUCTION

- Gas: 68%
- Oil: 16%
- Coal: 11%
- Electricity: 5%

E4tech 2014; own diagram
PROCESSES FOR PRODUCING HYDROGEN

PRIMARY ENERGY
- Solar, Wind
- Algae from sunlight
- Biomass
- Natural Gas
- Oil
- Coal

SECONDARY ENERGY
- Electricity
- Biomethane
- Biogas
- Ethanol
- Vegetable Oils

CONVERSION
- ELECTROLYSIS
- BIOCHEMICAL CONVERSION
- THERMOCHEMICAL CONVERSION
 - SMR: Steam methane reforming
 - POX: Partial oxidation
 - ATR: Autothermal reforming

INTERMEDIARY PRODUCT
- Syngas

FINAL ENERGY CARRIER
- HYDROGEN
THE PRINCIPLE OF AN ALKALINE ELECTROLYSER

\[\frac{1}{2} \text{O}_2 \rightarrow \text{H}_2 \text{O} + \frac{1}{2} \text{O}_2 + 2e^- \]

\[2 \text{OH}^- + 2e^- \rightarrow \text{H}_2 + 2 \text{OH}^- \]
SECTOR COUPLING: POWER-TO-X PATHWAYS

POWER-TO-GAS

CO₂ → Methanation → Methane PtCH₄

POWER-TO-LIQUIDS

CO₂ → Storage caverns → Synthesis → Petrol, Diesel, Jet fuel
ENERGY INPUT FOR HYDROGEN SUPPLY

4.5 MJ/MJ H_2

3.5

2.5

1.5

0.5

- EU Gas-Mix Reforming
- Biogas-Mix Reforming
- LNG Reforming
- EU Electricity-Mix Electrolysis
- Renewable Electricity Electrolysis

JEC 2014; own diagram

Copyright of Shell International
GREENHOUSE GAS EMISSIONS OF HYDROGEN SUPPLY

250 g CO₂/MJ H₂

- Centralised Paths
- Decentralised Paths

EU Gas-Mix Reforming
Biogas-Mix Reforming
LNG Reforming
EU Electricity-Mix Electrolysis
Renewable Electricity Electrolysis

JEC 2014; own diagram
HYDROGEN PRODUCTION COSTS

12 €/kg H₂

LBST/Hinico 2015; Grube/Höhlein 2013, own diagram

Current Projected Min. - Max.

Centralised Gas Reforming Decentralised Gas Reforming Centralised Electrolysis Decentralised Electrolysis Centralised Biomass Decentralised Biomass
HYDROGEN STORAGE METHODS

PHYSICAL

<table>
<thead>
<tr>
<th>Method</th>
<th>Pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed Gaseous Hydrogen</td>
<td>CGH₂ (350, 700)</td>
</tr>
<tr>
<td>Cryo-compressed Hydrogen</td>
<td>CcH₂</td>
</tr>
<tr>
<td>Liquefied Hydrogen</td>
<td>LH₂</td>
</tr>
<tr>
<td>Slush Hydrogen</td>
<td>SH₂</td>
</tr>
</tbody>
</table>

MATERIALS-BASED

<table>
<thead>
<tr>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal Hydrides</td>
<td></td>
</tr>
<tr>
<td>Liquid Organic Hydrogen Carriers</td>
<td>LOHCs</td>
</tr>
<tr>
<td>Sorbents (MOFs, Zeolites, Nanotubes)</td>
<td></td>
</tr>
</tbody>
</table>
HYDROGEN STORAGE DENSITY

- LH₂ (80 g/l, 1 bar, -253°C)
- CcH₂ (60 g/l, 300 bar, -235°C)
- SH₂ (40 g/l, 1 bar, -259°C)
- CGH₂ (20 g/l, 350 bar, 15°C, 700 bar, 15°C, 1 bar, -253°C)

BMW 2012; Eichhölder/Klell 2012; own diagram

Copyright of Shell International
STORAGE DENSITY OF TANK SYSTEMS

35 MJ/kg
30
25
20
15
10
5
0

Petrol
FCEV
BEV

IEC 2013 VDE 2015; own calculation
HYDROGEN ROAD TRANSPORT

TUBE TRAILER
200 – 250 bar, ≈ 500 kg, ambient temperature

CONTAINER TRAILER
500 bar, ≈ 1,000 kg, ambient temperature

LIQUID TRAILER
1 – 4 bar, ≈ 4,000 kg, cryogenic temperature
HYDROGEN PIPELINES PER COUNTRY

- USA 2,608 km
- Belgium 613 km
- Germany 376 km
- France 303 km
- Netherlands 237 km
- Canada 147 km
- Others 258 km

HyARC 2017; own diagram
GLOBAL USAGE OF HYDROGEN

- Ammonia: 55%
- Methanol: 10%
- Refining: 25%
- Other: 10%

Zakkour/Cook 2010; own diagram
PRINCIPLE OF THE FUEL CELL

$\text{H}_2 + \frac{1}{2} \text{O}_2 = \text{H}_2\text{O}$

HEAT
STATIONARY APPLICATIONS

Backup Power

Electrical efficiency up to 45%

System efficiency up to 95%
OWNERSHIP COST OF DOMESTIC ENERGY

Assumptions of TCO calculation:
- Reference building 150 m² living space
- Heat: low-temperature gas boiler with consumption of 22,500 kWh/a,
- Electricity consumption 4,000 kWh/a
- Installation + energy cost, 20 years lifetime

Three modernisation options:
- Condensing gas boiler (€ 7,000)
- Air sourced heat pump (€ 12,000)
- Micro-CHP fuel cell (€ 20,000)
TECHNOLOGY READINESS LEVELS OF HYDROGEN APPLICATIONS

TRL
9
9
Space Travel
9
Industrial Trucks
9
Stationary Applications
9
Passenger Cars
8
7
7
Buses
7
Light Rail
8
6-7
6-7
Shunting Locos
6-7
Motorcycle
6-7
Lorries
6-5
6-5
Aviation
6-5
Shipping
5
5

Copyright of Shell International
FUEL CELL CONCEPTS FOR PASSENGER CARS

BEV WITH RANGE EXTENDER

Battery — Converter — Electric motor — Battery
Fuel cell — Hydrogen tank

FUEL CELL-DOMINANT SYSTEM

Battery — Converter — Electric motor — Battery
Hydrogen tank — Fuel cell — Electric motor
FUEL COSTS COMPARED*

* European fuel prices, passenger cars 2020+ (JEC 2014)
OWNERSHIP COSTS: FCEV AND PETROL VEHICLES

- **FCEV 2010+** 9.50 €/kg H₂
- **Petrol Hybrid 2020+** 2.50 €/l
- **Petrol 2020+** 1.50 €/l
- **FCEV 2020+** 7 €/kg H₂

![Graph showing ownership costs for FCEV and petrol vehicles over total mileage in km.]
OWNERSHIP COSTS: FCEV AND BEV

FCEV 2010+ 9.50 €/kg H₂
FCEV 2020+ 7 €/kg H₂
BEV 2020+ 35 ct/kWh
BEV 2020+ 20 ct/kWh

Total mileage in km
COMPONENTS OF A HYDROGEN REFUELLING STATION

UPSTREAM

1. **Electrolyser**

REFUELLING STATION

2. **Low-Pressure Storage**

3. **Compressor**

4. **High-Pressure Storage**

5. **Precooling**

6. **Dispenser**
SUPPLY PATHWAYS:
DECENTRALISED HYDROGEN PRODUCTION ON A RETAIL SITE
Classes of Hydrogen Refuelling Stations by Size

<table>
<thead>
<tr>
<th></th>
<th>Very small XS</th>
<th>Small S</th>
<th>Medium M</th>
<th>Large L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispenser</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Max throughput per day</td>
<td>80 kg</td>
<td>212 kg</td>
<td>420 kg</td>
<td>1,000 kg</td>
</tr>
<tr>
<td>Max no. of refuellings per day</td>
<td>20</td>
<td>38</td>
<td>75</td>
<td>180</td>
</tr>
<tr>
<td>Max no. of FCEVs supplied per station</td>
<td>100</td>
<td>400</td>
<td>800</td>
<td>1600</td>
</tr>
</tbody>
</table>
SPECIFIC WELL-TO-WHEEL PASSENGER CAR GREENHOUSE GAS EMISSIONS “REAL WORLD” DRIVING CONDITIONS, EUROPE

200 g CO₂/ km

<table>
<thead>
<tr>
<th>Year</th>
<th>Tank-to-Wheel</th>
<th>Well-to-Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>160</td>
<td>40</td>
</tr>
<tr>
<td>2030</td>
<td>120</td>
<td>40</td>
</tr>
<tr>
<td>2040</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>2050</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

PETROL
- E10

PETROL HYBRID
- E10

BATTERY ELECTRIC VEHICLE
- Electricity Mix 450

FUEL CELL ELECTRIC VEHICLE
- Hydrogen Mix
NUMBER OF FCEVS IN SELECTED MARKETS

Global number of vehicles
approx. 1 bln today
approx. 2 bln 2050

Data: IEA 2015b

Copyright of Shell International
NEW REGISTRATIONS OF FCEVS IN SELECTED MARKETS

10 mln vehicles

2025 2030 2035 2040 2045 2050

Japan
EU 4
USA

Data: IEA 2015b
ANNUAL H₂ DEMAND OF FCEVS (IN 2DS HIGH H₂ SCENARIO)

Global hydrogen production today
45 – 50 mln t

7 mln t H₂ p.a.
WELL-TO-WHEEL GHG SAVINGS OF FCEVS COMPARED TO PETROL VEHICLES

Equates to approx. 8% of total mobility related emissions of the three markets compared to baseline (New Policy Scenario IEA 2014).
POLICY ASKS FOR THE HYDROGEN ECONOMY

- Production processes: cost, efficiency, flexibility
- Fuel cells: cost, efficiency, stability
- Long-term mass storage, R&D in materials-based storage
- Support launch of BUP/Micro CHP systems + FC vehicles
- Build-up of hydrogen supply and distribution infrastructure
- “Level playing field” + sector coupling
- Create/ensure consumer acceptance
Questions and Answers

www.shell.de/h2studie
www.shell.de/wasserstoffstudie
www.shell.com/hydrogen